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A B S T R A C T

Lagrangian particles in the material point method (MPM) are free to flow through the background Eulerian mesh
to represent material deformation. Excessive compression or tension in the kinematic field tends to entangle the
particles from the initial uniform configuration, causing artificial voids or aggregations that lead to loss of the
continuity of the stress field and the singular deformation gradient of the particles, undermining computational
robustness and accuracy. In this paper, the reseeding operation is performed in elements depending on the
numbers of the accommodated particles and their accumulated deformations. The state variables of the reseeded
particles are recovered from their surrounding old counterparts. The stresses of the reseeded particles around the
structure are adjusted to mitigate the fluctuations of contact force from errors in the state recovery. Benchmark
problems of deep penetration of a wished-in-place T-bar and the dynamic impact of a submarine landslide on a
partially buried mudmat are analysed. The results of the MPM analyses are validated by comparison with the
exact solutions by theoretical analyses and the numerical predictions using computational fluid dynamics (CFD)
simulations.

1. Introduction

Large deformation problems are frequently encountered in geo-
technical practices, which include the impact of submarine landslides
on pipelines (Dong et al. 2017), free-falling torpedo anchors pene-
trating into seabed (Kim et al. 2018), and the dynamic installation of
suction caissons (Cox et al. 2014). To avoid excessive mesh distortion in
the simulation of large deformation problems, Lagrangian methods seek
to remesh periodically and interpolate field variables from the old
meshes to the new ones (Hu and Randolph 1998; Wang et al. 2013;
Zhang et al. 2013; Tian et al. 2014); Eulerian methods allow the ma-
terial to flow through a fixed spatial mesh by decoupling the mesh and
material movement (Qiu and Grabe 2012; Zheng et al. 2014); and ar-
bitrary Lagrangian Eulerian (ALE) methods combine the merits of the
Lagrangian and Eulerian approaches (Di et al. 2007; Nazem et al.
2008).

The material point method (MPM), originated from the particle-in-
cell method in computational fluid dynamics (CFD) (Harlow 1964) and
then extended to solid mechanics (Sulsky et al. 1995), falls into the
category of the ALE methods. The material in the MPM is represented
by a cloud of discrete particles that inherit history-dependent in-
formation such as mass, volume, density, velocities, deformation gra-
dients, and stresses. A fixed Eulerian mesh is used to calculate the
governing equations in each incremental step without carrying

permanent information. The large deformation of the material can be
derived by tracking the particles moving through the background mesh.
The MPM has been applied to mimic the flow of granular materials
(Bardenhagen et al. 2000), the evolution of subaerial and submarine
landslides (Andersen and Andersen 2010; Soga et al. 2016), the dy-
namic process of pile driving (Hamad 2016), and the large-amplitude
displacement of structural elements through soil (Phuong et al. 2016).

However, the large deformation of the material entangles the par-
ticles from the initial uniform arrangement, often causing artificial
voids among stretched particles or virtual particle aggregations in
compressive domains (Ando et al. 2012; Sołowski and Sloan 2015; Yue
et al. 2015), somehow similar to mesh distortion in the conventional
finite element method (Hu and Randolph 1998; Wang et al. 2013). Also,
virtual interpenetration or departure between soil and structure parti-
cles may be induced by the ‘penalty’ contact algorithm adopted, al-
though other contact algorithms are also available, such as moving-
mesh contact (Ceccato et al. 2016) and generalised frictional contact
(Nairn et al. 2018). The varied particle arrangements may introduce
numerical noises given the loss of the continuity of the stress field or the
singular deformation gradient of the particles. As a result, computa-
tional robustness and accuracy tend to be undermined (Steffen et al.
2010). For instance, convergence is not necessarily enhanced with mesh
fineness (Liang et al. 2019). Techniques splitting particles in sparse
domains and merging particles in dense areas were then developed, Tan
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and Nairn (2002) and Ma et al. (2009) in the simulation of high-energy
explosions as well as Ando et al. (2012), Yue et al. (2015), and Gao
et al. (2017) for computer animations. Most of the previous explora-
tions of the rearrangement of particles were based on a qualitative
description and limited to visual treatment, which needs to be enhanced
for the quantitative analysis of soil–structure interactions in terms of
mitigating the fluctuations of contact force.

In this paper, a technique for reseeding particles specialised for
soil–structure interactions based on explicit integration is presented.
The reseeding operation is performed in elements depending on the
number of the accommodated particles and their accumulated de-
formations. The state variables of the reseeded particles are recovered
from their surrounding old counterparts. The stresses of the reseeded
particles are adjusted to mitigate the fluctuations of contact force from
errors in the state recovery. Then benchmark problems of deep pene-
tration of a wished-in-place T-bar and the dynamic impact of a sub-
marine landslide on a partially buried mudmat are analysed.

2. Algorithm of material point method

2.1. Standard material point method

The standard MPM analyses were undertaken using an in-house
program, MPM-GeoFluidFlow, which stems from an open-source
package, Uintah (Guilkey et al. 2012), and features a novel contact
algorithm ‘Geo-contact’ (Ma et al. 2014), as well as a GPU parallel
computing strategy (Dong et al. 2015b; Dong and Grabe 2018). Meshes
with identical sizes of square elements were used. The explicit updated
Lagrangian calculation in each incremental step was based on the GIMP
method presented by Bardenhagen and Kober (2004), while the semi-
implicit and implicit integration schemes were presented by Guilkey
and Weiss (2003), Sulsky and Kaul (2004), Stomakhin et al. (2013), and
Wang et al. (2016). The definition of the stresses and strains followed
finite strain theory taking account of the incremental rotation of the
configurations between time steps for objectivity: the stresses were
measured with the Cauchy stress and updated with the Jaumann rate,
and the strains were calculated with the deformation gradient. The
main functions within each incremental step for the soil–structure in-
teraction problems are as follows, where the structure is idealised as a
rigid body:

(i) The time step starts with the function ‘Initialisation of nodal
variables’, initialising the nodal variables of the structure and soil, e.g.
masses, velocities, momenta, normal and tangential directions, and
internal forces.

(ii) The function ‘Interpolation from particles to nodes’ is to inter-
polate the masses and momenta of the associated particles (inherited
from the previous incremental step) to the nodes
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where mi, Mi, and ωi
normrepresent the mass, momentum and normal

direction at node i, respectively; mp and vp are the mass and velocity of
particle p, respectively; Sip and ∇Sipare the shape function and its gra-
dient at node i evaluated at particle p, respectively; and Σp represents
the summation over all related particles. The derivation of the normal
direction ωi

norm in Eq. (3) can be referred to in Bardenhagen et al.
(2000, 2001). For the soil, the internal force is also obtained (while the
external nodal force fi

extwill be described at Section 3.4):
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where σp and Vp are the stress and volume at soil particle p, respec-
tively.

(iii) The function ‘Calculate nodal velocities and accelerations’ is to
obtain the velocities and accelerations on the background mesh. At the
commencement of the current incremental step, the velocity of the node
is

=v M
mi

i

i (5)

The acceleration for the soil node from the internal force is

=
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Then the velocity is updated as

′ = +v v a tΔi i i (7)

where tΔ is the time increment and determined through the
Courant–Friedrichs–Lewy stability condition:

=
+
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λ G ρ

Δ
( 2 ) (8)

where ρ is the soil density, c is the Courant number, h is the size of the
square element, and G and λ are Lamé’s parameters.

For the soil node in contact with a moving structure, ′vi is further
adjusted into vi

newdepending on the adopted contact algorithm ‘Geo-
contact’ (Ma et al. 2014), described as follows. Hence, the overall ac-
celeration for the current time step at soil node i is

=
−

a
v v
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i inew
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(9)

(iv) In the function ‘Update particle state’, the strains of the soil
particles are calculated with the deformation gradient using an updated
formulation:

=F f Fp p p
new

(10)

where fp is the relative deformation gradient
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(11)

with I indicating the identity matrix. The stresses and material prop-
erties of the soil particles are calculated using a constitutive model with
the deformation rate Dp and vorticity Wp:
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where the superscript T means the transposition of a tensor. In addition,
the velocities and positions are updated by mapping the nodal accel-
erations and velocities

∑= +v v S a tΔp p
i

ip i
new new

(14)

∑= +X X S v tΔp p
i

ip i
new new

(15)

where Xp represents the particle coordinates at the commencement of
the current time step. Essentially, the movement of the particles re-
presents the flow of the soil within the background mesh.
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2.2. Contact algorithm

The conventional contact algorithms (Sulsky et al. 1995; York II
et al. 2000; Bardenhagen et al. 2000, 2001) were enhanced with an
algorithm termed ‘Geo-contact’ (Ma et al. 2014), specialised for soil–-
structure interaction. Geo-contact introduces a penalty function to the
standard multi-field velocity adjustment (Bardenhagen et al. 2000)
between the soil and the rigid structure, which is the main reason for
the relatively stable reaction forces obtained in this study. Two Eulerian
meshes were configured for the soil and structure, respectively, al-
lowing for a multi-valued nodal velocity field. The soil and structure
may be in contact at the nodes if both of their mass projections are non-
zero values. For a specific node i of the soil in contact, its normal re-
lative velocity to the structure is =v v ωΔ Δi i i

norm norm, where the relative
velocity is = ′ −v v vΔ ( )i i 0 , with v0 as the velocity of the structure and ′vi
as the updated nodal velocity by Eq. (7). Node i of the soil can be
distinguished as approaching or departing from the structure with the
relative normal velocity

>
<

v
v

Δ 0, approach
Δ 0, depart

i

i

norm

norm (16)

The normal contact strategy between the soil and the structure is
realised by adjusting the normal relative velocity: (i) for soil node i
approaching the structure, the normal relative velocity is eliminated;
and (ii) for soil node i departing from the structure, the normal relative
velocity is eliminated only if no separation between the structure and
the soil is considered (otherwise, the normal relative velocity is main-
tained). Then the normal contact force at node i is

=
∗

T
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norm,

(17)

where ∗vΔ i
norm, is the adjustment of the normal relative velocity, and the

total normal contact force on the structure is
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In addition to the normal contact constraint, the Geo-contact algo-
rithm also incorporates a tangential constraint along the interface to
model a frictional contact condition. The relative tangential velocity of
the soil node i to the structure is

=
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×
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where ωi
tang is the tangential direction of the interface at node i.

Function ‘×’ represents the cross product. The shear along the interface
is governed by the Coulomb friction law, i.e. the adjusted tangential
relative velocity ∗vΔ i

tang, is bounded by ∗μ vΔc i
norm, , in which µc is the

Coulomb friction coefficient. In geotechnical applications involving
soils with low permeability, a threshold value of the friction stress is
usually applied for total stress analyses under undrained conditions:

=τ αsu (20)

where τ is the maximum shear stress along the interface and α is the
limiting shear stress ratio, ranging from 0 to 1. So the tangential relative
velocity will be adjusted by
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where Ai is the interface area represented by node i. If =∗v vΔ Δi i
tang, tang,

the sliding material sticks to the structure without slipping, corre-
sponding to the no-slip condition. If =∗vΔ 0i

tang, , the smooth condition
is considered to allow for free slipping in the tangential direction along
the interface; otherwise, the frictional condition is considered. Then the
tangential contact force at node i is
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(22)

the total tangential contact force on the structure is
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(23)

and the total contact force is

= +T T Tnorm tang (24)

However, Equations (18), (23) and (24) tend to predict the contact
force with significant fluctuations due to the staggered shapes of the
structure defined by structured elements (Ma et al. 2014), which may
be solved with unstructured elements (Wang et al. 2017). Another al-
ternative is to introduce a penalty factor βi to the adjustment of the
relative velocity

= +∗ ∗v β v vΔ (Δ Δ )i i i i
adju norm, tang,
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i
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where vΔ i
adjuis the final adjustment of the nodal velocity, si is the dis-

tance from node i to the surface of the structure and k is the penalty
power. With the introduction of the penalty function, virtual inter-
penetration and departure between the soil and structure are permitted,
which will undermine computational robustness in the simulation of
extremely large deformation problems. The excessive interpenetration
of the soil particles into the rigid structure caused by continuing com-
pressions, renders the structure essentially permeable; hence, the mass
of the soil in the flow field is reduced. A virtual gap can be formed
between the departing soil and structure, which means their contact
area shrinks inappropriately. Finally the contact force at node i is

=T
m v

t
Δ
Δi

i i
adju

(26)

and the total contact force on the structure is

∑=T
m v

t
Δ
Δi

i i
adju

(27)

3. Reseeding technique

3.1. Tracking of soil boundary

The soil domain needs to be outlined before the reseeding of the
particles inside. Previous studies include those by Remmerswaal (2017)
based on the support domain of particles and Bing et al. (2019) using
the B-spline. A new scheme is used here based on the engagement of
elements, which are categorised into inner, boundary and outer in-
dividuals. An empty element with no particle inside is seen as an outer
element. An engaged element is distinguished as inner if all the sur-
rounding elements have particles inside; otherwise, it is recognised as a
boundary element. The material boundary lies between the boundary
elements and their outer neighbours. Fig. 1(a) illustrates a submarine
landslide impacting a partially-buried mudmat, which will be detailed
in Section 4.2. Boundary of the sliding mass was detected as in Fig. 1(b)
and 1(c). To raise the resolution of the element-based material
boundary, the square boundary elements are evenly divided into four
lattices. The lattices are also categorised into inner, boundary, and
outer individuals. Then the material boundary is drawn along the
border between the engaged and empty lattices (Fig. 1(d)). Finally, the
obtained saw-tooth–shaped material boundary is cropped along the
structure surface if in contact. Although the lattice-based scheme tends
to over-estimate the size of the soil domain at free surfaces, the soil–-
structure interface can be accurately tracked.
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3.2. Reseeding of particles

In many cases of MPM analysis, the initial configuration of the four
particles in each element is sufficient to present a smooth stress field
(Bardenhagen and Kober 2004), while the arrangement of 16 particles
in each element is also adopted in the high-velocity impact of a sub-
marine landslide on subsea structures to reduce the fluctuation of im-
pact forces (Dong et al. 2017). However, the particle numbers in some
elements under extremely large deformations often decrease to less
than half or increase to more than twofold of the initial numbers. In that
case, reseeding the deformed particles into a new uniform configuration
is necessary. The reseeding operation is performed in elements with the
number of particles N < βLN0 (leading to void) or N > βUN0 (cor-
responding to aggregate), where βL and βU are the lower and upper limit
coefficients, respectively, and can be determined through trial calcu-
lations; and N0 is the initial number of particles in an element, which is
often chosen as 4 or 16.

The accumulated strain of particle p is calculated with the de-
formation gradient Fp using Eq. (10). We assume that the material re-
presented by a particle has an initial length in the jth direction as Lj

0. A
rough estimate of the deformed length for particle p in the jth direction
is =L F Lp j p jj j, ,

0, where Fp,jj refers to the jth diagonal component of Fp. A
more accurate estimate of the deformed shape of the particles can be
referred to in the studies of Charlton et al. (2017) and Coombs et al.
(2020). The gap between neighbouring particles is proportional to the
deformed lengths of the particles (Remmerswaal 2017). Therefore, the
reseeding operation is also performed in elements where more than one

particle has deformed length <L β Lp j j, L
0 (i.e. over-compressed, may

cause aggregate) or >L β Lp j j, U
0 (i.e. over-stretched, may cause void).

The new particles are reseeded in the inner and boundary lattices, and
the relative coordinates for a reseeded particle r in a lattice
are = −X n h N( 0.5)r j j j,

0 (see Fig. 2(a)), where N j
0, often chosen as two

or four, is the initial number of particles in the jth direction in each
element; nj is the sequence number of the reseeded particle in the jth
direction and is specified as 1, 2,…, N 2j

0 . Fig. 2(b) shows the reseeding
of the particles before a partially-buried mudmat.

3.3. Recovery of state variables

The reseeded particles have an identical density to the old particles
because of the consistency of the material. The volumes and masses of
the old particles in each element are evenly allocated to the new par-

ticles = ∑V V Nr

N

p
0

0, mr = ρVr, by which the mass of the material is

conserved in each element. The lengths of the particles can then be
calculated as =L Vr j r, in consideration of their square shapes. The
deformation gradient Fr is initialised as identity I, which does not affect
the following calculation of stress as the updated Lagrangian formula-
tion in Eq. (10) is used. Other state variables, i.e. velocities and stresses,
have to be recovered from the old state field. The scheme of recovering
from the background mesh, requiring twice the interpolations between
the particles and nodes, proves to induce excessive viscosity (Nairn
2015). A feasible scheme is to interpolate the variables from the old
configuration of particles to the new ones straightforwardly, similar to
the mapping technique used in the large deformation finite element

(a) velocity contour at 1 s

(b) detected soil boundary 

(c) close-up of element-based boundary around mudmat

(d) close-up of lattice-based boundary around mudmat
Fig. 1. Tracking of soil boundary for submarine landslide across partially-buried mudmat.
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method (Hu et al. 1998) and the kernel smoothing technique in
smoothed particle hydrodynamics (Bui and Nguyen 2017). For a re-
seeded particle r, all the old particles in its range of 0.75 h (Fig. 3),
which needs to be sufficiently wide to accommodate more than three
old particles, are used to recover the velocities and stresses of the re-
seeded particles as

=
∑

∑
v

d v

dr
p

rp p

p
rp

(28)

(a) Particles initialised in an element

(b) before half-buried pipe
Fig. 2. Particles reseeded for submarine landslide across partially-buried
mudmat (N0 = 16).

Fig. 3. Recovery of state variables from the surrounding particles.

(a) T-bar

(b) failure mechanism
Fig. 4. Schematic of T-bar (after White et al. 2010).

Fig. 5. Schematic for T-bar penetration (non-scaled).
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=
∑

∑
σ

d σ

dr
p

rp p

p
rp

(29)

where drp is the distance between the reseeded particle r and the old
particle p.

Errors are caused due to the difference between the old and new
stress fields, which induce virtual accelerations at the surrounding
nodes of the new particles. To attenuate the errors and virtual accel-
erations, the opposite of the old stress field is exerted over the new
configuration as a boundary condition in terms of external nodal force
− fi,old

int . The virtual acceleration at node i will be in a form similar to Eq.
(6)

=
−

a
f f

mi
i i

i
,new

,new
int

,old
int

,new (30)

where fi,new
int is the internal forces at node i after reseeding, and ai,newis

the virtual acceleration at node i given the difference between the in-
ternal and external forces (i.e. unbalanced nodal force; Itasca, 2004;

Charlton et al., 2017). If the nodal acceleration ai,new is being trivial
(such as ⩽a 10i,new

- 5m/s2), the stress field under the new configuration
can be seen as equivalent to the old one. Then a number of explicit
calculations using Eqs. (7)–(13) can be taken

=
−

a
f f

mi
n i

n
i

i
,new

,new
int,

,old
int

,new (31)

=+σ σ a tΓ( , Δ )r
n

r
n

i
n1
,new (32)

where the superscript n means the incremental step, the function Γ
represents the constitutive model using Eqs. (12) and (13) by replacing
vi j,

newasa tΔi
n
,new . All the variables in Eqs. (31) and (32) excepting the

stress of the new particle σr remain unchanged. It should be noted that
Eqs. (31) and (32) essentially follow the standard MPM algorithm ex-
cept for the ‘virtual acceleration’ used. The accuracy and convergence
for the standard MPM algorithm with explicit calculations have been
assessed in Wallstedt and Guilkey (2008), Steffen et al. (2008; 2009)
and Sołowski and Sloan (2015), which may be inherited here due to the
trivial modifications. In Section 4 the convergence will be further

(a) predicted resistance

(b) fluctuations after reseeding
Fig. 6. History of penetration resistance.
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presented for specific benchmark problems.

3.4. Mitigation of contact force fluctuations

The contact force Ti, as described in Section 2.2, is a function of the
updated nodal velocities

= = ′ =
⎛
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r
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where Ф represents the contact strategy adopted in the standard MPM
algorithm. Errors in the recovery of the state variables, i.e. mass mr,
velocity vr, volume Vr, and stress σr, cause the fluctuation of contact
force. The stress σr, derived from the nodal velocities, suffers a lower
order of accuracy when compared with other variables. Therefore, the
fluctuation of contact force is assumed to be mainly caused by the re-
covery of the stress field. To mitigate the fluctuation of contact force,
the stress field represented by the new particles in the contact area

needs to be further adjusted.
The old contact force Ti,old at node i with the old particle config-

uration can be calculated by following the standard MPM steps (Eqs.
(1)–(27)) before the reseeding operation, which can be imposed on the

new configuration as an external force. Considering =Ti
m v

t,new
Δ

Δ
i i,new ,new

adju

in Eq. (33), fluctuation of the contact force in the jth direction can be
expressed as
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where mi,new and vΔ i j, ,new
adju are the mass and adjusted velocity at node i,

respectively, with the new particle configuration. A velocity boundary
condition is essentially enforced by the contact force fluctuation as

−
vΔ

T T
T i j, ,new

adjui j i j

i j

, ,new , ,old

, ,new
. Then, the stresses of the new particles can be ad-

justed as
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where the function Γ represents the constitutive model using Eqs. (12)
and (13) by replacing vi j

new
, as

−
vΔ

T T
T i j, ,new

adjui j i j

i j

, ,new , ,old

, ,new
. In Eq. (35), Ti,j,old is

calculated before the reseeding operation, while Ti,j,new,
σrand vΔ i j, ,new

adju are obtained based on the new particle configuration. The
updated stress ∗σr is considered to be closer to the original stress field
represented by the old particles and hence will cause lower fluctuation
of contact force in the jth direction. Then explicit calculations can be
performed as follows:
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The calculations will be terminated when a sufficiently small dif-
ference is reached between Ti,j,new and Ti,j,old, i.e. the fluctuation of
contact force at node i in the jth direction is mitigated. It should be
noted that the mitigation technique using Eqs. (33) – (37), proven to be
suitable for simple elasto-plastic constitutive models, needs additional
procedures to tackle the complicated constitutive models with a
number of history-dependent parameters, such as the SANISAND model
(Taiebat and Dafalias, 2008). Admittedly, spurious noise may be caused
in the interpolations of the stresses due to complicated stress paths,
such as unloading condition, within the elasto-plastic constitutive
models, which is not tackled in this study (Hu et al. 1998). Accuracy
and viability of the above reseeding operations are validated in the
following benchmark analyses.

4. Numerical examples

4.1. Deep penetration of T-bar

For in-situ geotechnical investigation under deep waters, the T-bar
(Fig. 4(a)), a penetrometer with no requirement of extra correlation of
the penetration resistance by mobilising the full-flow failure me-
chanism in the surrounding soil (Fig. 4(b)), has been proven to be more
accurate than the conventional vane shear test and cone penetration
test (Randolph and Houlsby 1984; Einav and Randolph 2005). The
shallow penetration of structures (less than half the diameter or width
of the structure) has been successfully simulated with the MPM (Dong
et al. 2015a, b; Phuong et al. 2016; Ceccato et al. 2017; Wang et al.
2017), while the simulation of deep penetration of the T-bar (close to
the diameter) is explored here.

In the analysis, the diameter D of the T-bar was taken as the

Fig. 7. Virtual gap between structure and above soil.

Fig. 8. Mitigation of errors of nodal forces due to particle reseedings around T-
bar.

Y. Dong Computers and Geotechnics 127 (2020) 103716

7



representative size 0.04 m in the offshore industry, which was simpli-
fied as planar to reduce the computational effort. Both the horizontal
and vertical dimensions of the soil were 10D (Fig. 5), while the T-bar
was ‘wished in place’ with an initial embedment depth of 5D. The
element size was selected as D/40 (i.e. 0.001 m), which has been va-
lidated to be fine enough to reach consistent contact forces with finer
elements (Dong et al. 2015a). A 2 × 2 particle configuration was al-
located for each element fully occupied by the soil or T-bar prior to the
calculation. In total, 160,000 soil particles were discretised.

The submerged density of the soil was ρ= 650 kg/m3. The geostatic
stresses induced by the self-weight of the soil was not considered. The
soil was modelled as an elastic-perfectly plastic material with the von
Mises yield criterion. The homogeneous undrained soil strength was
su = 5 kPa. Young’s modulus of the soil was 500su and Poisson’s ratio
was considered as 0.49. To be conservative, the time step Δt was de-
termined through the Courant–Friedrichs–Lewy stability condition with
c = 0.4 in Eq. (8). The penetration velocity of the T-bar was taken as
0.06D s−1, which is sufficiently slow to investigate the static responses.

(a) smooth

(b) rough
Fig. 9. Full flow of soil mobilised by T-bar (blue arrows describe velocity of particles). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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The interface between the T-bar and the soil was assumed as fully
smooth and fully rough, respectively. Because of the suction generated
in the undrained soil behaviour, the soil was enforced to stick to (i.e. no
separation) the T-bar after contact. This is critical to the formation of
the full-flow failure mechanism in the surrounding soil.

The mobilised soil resistances V are normalised as bearing capacity
factors Nc = V/suD, as shown in Fig. 6(a), with W representing the
penetration depth. For the deep penetration of the T-bar mobilising the
full flow of the surrounding soil, exact solutions by theoretical analysis

suggest the bearing capacity factor Nc as 9.14 and 11.94, respectively,
for fully smooth and rough conditions (Randolph and Houlsby 1984;
Einav and Randolph 2005). For the standard MPM analyses without the
reseeding procedures, the bearing capacity factors increase quickly to
values of 9.38 and 12.52 for the smooth and rough conditions, re-
spectively, close to the exact solutions with convergences less than 5%.
In that case, the full-flow failure mechanism of the surrounding soil is
mobilised. However, the soil above drops slower than the T-bar given
the penalty function in the contact algorithm (Eq. (23)), causing an

(a) Mean stress (smooth) (b) Norm of deviator stress (smooth)

(c) Mean stress (rough) (d) Norm of deviator stress (rough)
Fig. 10. Stress state around smooth and rough T-bars at 5 s.
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essential departure between the soil and T-bar (Fig. 7). The departures
occur at a penetration depth of 0.1D and 0.36D for the smooth and
rough conditions, respectively. As a result, the failure mechanism of the
soil changes into a partial-flow, and the bearing capacity factors finally
reach lower stable values of 6.0 and 7.19 for the smooth and rough
conditions, respectively. The bearing capacities of the T-bar with par-
tial-flow in the soil at shallow embedment are further discussed by

White et al. (2010).
The soil particles above the T-bar were then reseeded irregularly to

manually compensate the non-trivial departures at W = 0.1D – 0.2D
and W = 0.36D – 0.46D for the smooth and rough cases, respectively.
The state variables of the new particles were simply recovered from the
surroundings as described in Section 3.3, also utilised in the previous
studies (Tan and Nairn 2002; Ma et al. 2009; Ando et al. 2012; Yue
et al. 2015; Gao et al. 2017). Obvious spurious noises occur in the
contact forces immediately after each reseeding operation and last for a
number of incremental steps (Fig. 6(a)). Although the noises eventually
dissipate, they cause extra complications to the quantitative analysis of
the soil–structure interactions, especially when frequent reseedings are
required.

Another group of MPM analyses were performed with the mitiga-
tions by Eqs. (31), (32), (36) and (37) after the recovery of the particle
state. The maximum error of the nodal forces between the old and new
configurations is investigated as

=
⎛

⎝
⎜

− − ⎞

⎠
⎟Error

f f

f
T T

T
 MAX , .i

n
i

i

i j
n
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,old
int

,old
int

, ,new , ,old

, ,new (38)

Equilibrium between the configurations can be reached within 4000
steps with the error converges to 10 - 10 (Fig. 8), which implies a sa-
tisfying convergence of the mitigation technique using Eqs. (31), (32),
(36) and (37). The fluctuations of contact forces (< 0.4%), also par-
tially attributed to the intrinsic errors of the MPM in terms of element
crossing and volumetric locking (Coombs et al. 2018), are much smaller
than their counterparts with simple-recovery reseedings (> 2%)
(Fig. 6(b)). The induced fluctuations can be dissipated in 400 steps.
Then the obtained contact forces are relatively stable, and the nor-
malised bearing capacity factors converge to 9.54 and 12.49 for the
smooth and rough conditions, respectively (Fig. 6(a)). Because of the
reseeding operations, the particles above always stick to the T-bar, and
the full-flow mechanism of the surrounding soil is maintained through
the whole penetration process (Fig. 9). The stress state around the T-
bars at 5 s is shown in Fig. 10.

4.2. Submarine landslide impacting mudmat

Submarine landslides, carrying a mixture of soft sediments and
water at speeds of up to 20 m/s, often cause devastating harm to subsea
structures in their runout paths (Jakob et al. 2012). The MPM is used to
simulate the transient process of an idealised submarine landslide
running across a fixed mudmat. An initially rectangular planar slide,
having a length of 50 m and a height of 10 m, was idealised and placed
before the mudmat with a length of 10 m (Fig. 11). The slide was given
an initial horizontal velocity v = 6 m/s. The seabed was idealised as
smooth in consideration of the low shear resistance because of the
hydroplaning effect (De Blasio et al. 2004), which is the key factor for
the longer runout distances of the subaqueous slides than their sub-
aerial counterparts. A velocity inflow boundary condition was enforced

Fig. 11. Schematic for submarine landslide across mudmat (non-scaled).

(a) non-reseeded 

(b) reseeded
Fig. 12. Particle configurations at 1 s.
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at the left end of the slide, while its upper and right surfaces were free.
Absorbing boundary conditions were added at the left inflow and upper
free surfaces to attenuate the out-going stress waves induced by the
slide–mudmat impact, which would be detailed in an accompanying
paper (Shan et al. 2020). The mudmat was partially buried and exposed
to the sliding mass with a height e of 1 m. The mudmat was regarded as
smooth, and separation was permitted between the slide and mudmat.

The apparent density of the slide was ρ = 1,500 kg/m3. The grav-
itational acceleration was g = 9.81 m/s2. Considering buoyancy, the
effective unit weight of the slide material was (ρ – ρw)g. The rate-de-
pendent undrained shear strength of the non-Newtonian sliding mate-
rial was characterised by the Herschel–Bulkley (H–B) rheological model
(Boukpeti et al. 2012), with su0 = 0.5 kPa, µ = 0.65, n = 0.4, and
γṙef = 0.06 s−1:

⎜ ⎟⎜ ⎟= ⎛

⎝
+ ⎛

⎝
⎞
⎠

⎞

⎠
s s μ

γ
γ

1
̇

̇

n

u u0
ref (39)

where su0 is the yield strength at the negligible strain rate, µ the visc-
osity coefficient, n the ‘shear-thinning’ index, γ ̇ the shear strain rate,
and γṙef the reference shear strain rate. Equation (39) was incorporated
in an elastic-perfectly plastic constitutive model with a von Mises yield
surface. For the slide-structure impact problem, a convenient nominal
shear strain rate is expressed as =γ v ė / (Dong et al. 2017). The non-
Newtonian Reynolds number =R ρv s/e

2
u is then 21.2, which is suffi-

ciently small to cause a laminar flow of the slide (Zakeri 2009; Liu et al.
2015). Young’s modulus was taken as a nominal value of 300su0.
Poisson’s ratio of the slides was taken as 0.49. The time step Δt was
determined through the Courant–Friedrichs–Lewy stability condition,
with c taken as 0.3 in Eq. (8).

In the MPM analysis, the element size was selected as e/40 (i.e.
0.025 m). The mesh independency of the reaction forces on the element
size was detailed in an accompanying paper (Dong et al., 2019). A
4 × 4 particle configuration was allocated for each element fully oc-
cupied by the slide or mudmat prior to the calculation, which is to
control the noises induced by the particles crossing the element
boundaries. In total, 12.8 million slide particles were configured. The
robustness of the solid-only MPM was validated by comparison with
two-phase computational fluid dynamics (CFD) simulations obtained
using a commercial finite volume method package FLUENT (ANSYS,
2011). The settings of the CFD analysis with the void-of-fluid scheme
was detailed in Dong’s study (2019).

Fig. 13. Normalised impact pressures predicted by CFD and MPM simulations.

Fig. 14. Mitigation of errors of nodal forces due to particle reseedings around
mudmat.

Fig. 15. Dispersion of fluctuations after reseeding particles in submarine
landslide.
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Because of the continuing compressions, the particle configuration
of the slide in front of the mudmat is entangled from the initial settings,
and the vertical lengths of the particles in front of the mudmat are up to
100 times the horizontal lengths (Fig. 12(a)). As a result, the pressures
obtained fluctuate more (Fig. 13), and the computational stability is
undermined as the computation is often disrupted by integration errors.
Therefore, the non-reseeding MPM analysis was terminated at 2.2 s.
Then reseeding operations were performed irregularly over the com-
pression area in front of the mudmat after 0.48 s. With the mitigation
technique by Eqs. (36) and (37) along with Eqs. (31) and (32), equili-
brium between the configurations can be reached within 50 steps with
the error converges to 10 - 10 (Fig. 14), which implies a satisfying con-
vergence. The spurious noises caused by the reseeding procedures are
trivial when compared with that using the simple recovery of the par-
ticle state (Fig. 15). The induced fluctuations can be dissipated in 30
steps, which converges faster than those in the T-bar cases (400 steps).
The main reason may be that more old particles (normally more than 6)
in each element are available in the calculations as 16 particles in each
element are initialised. The steps required for convergence would vary
depending on the specific problems simulated, which can be de-
termined through trial calculations. For the cases in this work, the
convergence of the reseeding operations is relatively satisfying. With
the reseeding operations, the uniformity of the particle configurations is
well maintained, and the ratios of the vertical to horizontal lengths of
the particles are maintained below four (Fig. 12(b)). Therefore, the
pressures obtained from the reseeding scenario are more stable than
those based on the non-reseeded particle configurations.

At the early stage of the impact, the soil flows over the mudmat
because of its inertia, shaping a cavity at the top of the mudmat. The
flow head falls gradually under the effect of self-weight, and touches
the top surface of the mudmat at ~ 1.4 s. Then the flow is separated

into two parts; one part backflows into the cavity, while the other
mobilises along the mudmat surface and finally falls onto the base
(~1.6 s). At the back of the mudmat, another cavity is formed by the
backflow of the falling slide (Fig. 16). The average pressures, i.e. the
horizontal impact force divided by the projected area of the mudmat,
predicted by the MPM are close to the CFD predictions before 1.6 s.
After 1.6 s, the pressures are decreased by the backflows in the cavities.
The MPM predictions present periodical fluctuations, with the soil in
the cavity approaching and departing from the wall of the mudmat. In
comparison, the CFD predictions are relatively smooth as the flow field
in the cavity characterised by the two-phase mixture of soil and air is
more continuous. In general, the pressures after 1.6 s by the CFD ana-
lysis are similar to the mean values of their MPM counterparts. Stress
state in sliding material at 2.5 s is shown in Fig. 17.

5. Conclusions

A technique for reseeding particles in an entangled arrangement
was presented, specialised for soil–structure interactions. The reseeding
operation was performed in inner lattices, i.e. quarter elements, de-
pending on the number of accommodated particles and their deformed
lengths. The state variables of the reseeded particles were recovered
from their original neighbours. The stresses of the reseeded particles
around the structure were adjusted to reduce the errors in the new
stress field and hence mitigate the fluctuation of contact forces. The
penetration of a wished-in-place T-bar for almost one diameter was
analysed. With the reseeding operation of the soil particles above the T-
bar, the soil was always stuck to the T-bar, and the full-flow mechanism
of the surrounding soil was maintained throughout the whole pene-
tration process. The normalised bearing capacity factors converged to
9.54 and 12.49 for the smooth and rough conditions, respectively, close

(a) 1.02 s

(b) 2.5 s

Fig. 16. Velocity contours of slide.
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to the exact solutions of 9.14 and 11.94. Then the transient process of a
submarine landslide impacting a partially embedded mudmat was
modelled. The Herschel–Bulkley rheological model was incorporated to
reflect the dependence of the undrained shear strength of the sliding
material on the shear strain rate. With the reseeding operations, the
uniformity of the particle configurations was well maintained. The
pressures obtained from the reseeding scenario were more stable than
those based on the non-reseeded particle configurations. The pressures
predicted by the MPM analysis were validated with those predicted by
computational fluid dynamic simulations. The reseeding technique
would be effective for soil–structure interactions based on explicit in-
tegration, which may be easily extended to structure-soil-water inter-
actions with minor modifications. For the MPM algorithms using im-
plicit integrations, applicability of the technique was not explored.
Effectiveness of the mitigation technique could also be limited by the
complicated constitutive models with a number of history-dependent
parameters.
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